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We deal with a form of cavitation flow which is the general case of flow
through a Borda orifice [1 ], and which can be used for a theoretical
study of slot cavitation [2].

1. The general problem. Assume that a plane stream of ideal,
weightless, incompressible fluid flows into an infinitely long slot, in-
side which there develops a cavitation void, i.e. a region of constant
pressure bounded by a stream line which separates from the edge of the
slot and goes off into a second sheet of a Riemann surface. Figure 1 is
a diagram of this kind of cavitation flow. The letters Vi, Vy, and H de-
note, respectively, velocity of the approaching stream at infinity, velo-
city in the slot at infinity and the slot depth. The required flow has
two critical points (location unknown at the outset), represented in
Fig. 1 by the letters D and F. For the dimensions of the cavity we have:
l the distance between two parallel tangents through points N and N, on
the cavity and h the ordinate of the point M which has a tangent parallel
to the upper wall,

The constant velocity at the edge or boundary of the cavity will be
denoted by ¥, and the total flow of fluid through the slot is Q.

The flow we are dealing with is a general case, as mentioned above, of
the well-known flow studied by Kirchoff [1]. It differs from the latter
in that, instead of the classical Kirchoff-Holmholtz pattern[1], we

choose that suggested in [3,4], and also, in our case, the velocity at
infinity V, £ 0.

Let us introduce two dimensionless geometrical parameters
k:ﬁ', e=1—17‘ (1.1)

and we will call A the relative length of the cavity and e the coefficient
213
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of contraction of the flow.
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If we are given any two dimensionless physical quantities x; and x
which characterize the flow, then, in the physical sense of the problem,
all remaining hydrodynamic flow parameters (in particular A and e) should
be determined by x, and x,.

For x, and x, we can take the cavitation numbers

__P1— Ppo _ Pz2—Po
n = 1/pV,2 ? ¥ = 1/gpV 42

(1.2)

where p, is the pressure in the cavity, p, and p, pressures, respectively,
at infinity upstream of the slot and within the slot.

Our problem involves the following: to find the complex potential of
the required flow W = W(z) = ¢ + iy, where ¢ is the velocity potential
and ¢ the stream function, and then to determine the relation between the
quantities A and e and the two dimensionless quantities x; and x,.

2. Determination of complex potential. We will find the rela-
tion ¥ = W(z) in parametric form:

W=W(@), z=12() (2.1)
wvhere { = £ + in is a complex variable which covers the first quadrant
of the upper half-plane {7n.Put F = 0 at point A in the flow. The region
in which W varies will be the half-plane with two cuts (Fig. 2). On trans-
forming region ¥ into region { so that the appropriate points in Figs.

2 and 3 correspond, we obtain (2.2)

92 g2 —et f2d? g2 —¢?
W)= m[ﬁ’—i—(d’+/’—e’)ln T=a +t s In (1__'_,;_2)'{2"]

To determine 2({) we introduce an auxiliary function

1 dWw 14 .
x(C) = an s =1nV‘—o‘—— is (2.3)

and note that
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Q - -7 _
2(8) =, @+ =) S o) X qg (2.4}

1

It is easy to see that y{{) is an analytic function all over the
region where { varies, with the exception of points { = f and { = d, at
which it has logarithmic singularities. At the boundaries of the regions
where { varies, the function y({) satisfies the following boundary condi-
tions
I=E O0<E<d, ([f<<ES>
L=in 0K oo
Imy=—= mpm [=F dE<e
Imy==»  mpr {=§ I<ES/

Rey =0 npr L =E e<EK (2.5}

Imyx=0 npn{

Thus, to determine the function x({) it is necessary to solve the
mixed boundary-value problem (2.5) which is easy to reduce to a mixed
boundary-value problem in the upper hal f-plane.
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If we make use of formulas which yield a solution to the general
boundary-value problem for a half-plane (5.6), and apply them to our case
we obtain

x(¢)=1In {(1—a%) (1 —BY ({2 — 72 (L~ d2)

0<a, p<1) (26
(Vo= +pVOE—D(VT—I+aVi—ap O<e p<) 28

It is easy to see that the function x({) which we have found satisfies
all the conditions indicated above. The parameters a and 8 which enter
expression (2.6), are connected with f and d by the relations

1 — g% e B2
/2:-———‘——-1_.&3 . d’:m 2.7)

Instead of inserting x{({) into (2.4) we use (2.6) and find
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H [ —¢2 1—et/t2
(t)"—;q‘[g (c’_i)‘“z In 1= :z +2=z n 1:54

+E+ad+aD) VBT = —aln LT _,/i;lf’_zz
— g

£ YE=E 4V ET 29
+2 ‘ln Y=o ] 2.8y
where
a=(1+aB)(a(1+e) +B(3—0"), b= (14 aB)%®+ (B + ac)®
c=(1+aB)*+2(a+B) (B + as®) — (a -+ B)%?, r=(1+ ap)(B + ac?)
g=1:(a+c), s=(14+ap)*+ (a+8)* 2.9

)
3. Determination of parameters. With arbitrary values for the

parameters a, 8 and ¢ which entered the formulas (2.2), (2.8) and (2.9),
the solution obtained emerges as more general than was required at the
outset. Indeed, it is easy to see that the formulas which give a solution
to the problem would not change if line AFB on the one hand, and EDC
on the other, represented solid parallel walls not touching each other

(Fig. 4). It is therefore essential to require fulfilment of condition
Im z() = 0 on EDC, or, as follows from (2.8), the condition

R(a,€)p2+4 o7 (a, 8)B—as?=0
where

R(a,s)=(14+¢€)*+(2+¢€)ea
T@, e)=2+(1—a)s

Solve this quadratic equation for 8 and we then have

VT3 (a, c)+ 4aR(a, ) —T (a,s)
B= 2T (a, c) (3.1)
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FIG. 4.

Thus, the solution we have found contains the two arbitrary parameters
a and ¢. To determine these parameters one must be given the two afore-
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mentioned physical quantities x; and x,. If by using the complex poten-
tial ¥ = ¥(z) found in parametric form (2.1) it is possible to express
x, and x, in terms of a and ¢ then we will have two equations for deter-
mining @ and ¢ :

x =x(a,s; B(a,89)), % = %3 (a, &; B (a,¢))

where Ba, ¢) is the R.H.S. of Equation (3.1).

Let x, and x, be cavitation numbers determined by formulas (1.2); we
then have

Ut aPU+B@e)r v (L ae P E+B(@e)p
T A—ar (=B OF *T @A —ac—B(a,0)

1 (3.2

We are convinced of the validity of these equations if we recognise,
in virtue of the Bernoulli integral

1
P—P=gpVd—Vd),  p—p=p (VP —Vs)
and that, in accordance with (2.3)
V1/Vo= expX(c0), Vs/Vo=exp X(0)

4. Shape and dimensions of the cavity contraction coeffi-
cient. The shape of the cavity is represented by the free stream
ANMM | E which bounds it (Fig. 1).

In order to rind the shape of the free stream line X = X(¢), Y=Y(¢)
let us put { = £, ¢ < £< 1 in Equation (2.8) and separate the real and
imaginary parts; we then get

H 2 __ g2 b g2 2
xO=s@—n—ni=F+whiomn] ccr<y
2H
YO =2 [6+a) t+ap) VI—B @—)—
T—& p—
—aarctg"/-g,—_%-{-z—:-arctgn V&'—:-_E—'] (4.1)

It is evident that the free stream has two tangents parallel to the
y axis at points N(X(n), Y(n)), N,(X(n,), Y(n,)) and one tangent parallel
to the x axis at ¥(X(m), Y(m)), so that

2 (¢ + #%5)2 — 4sh 2
c+tsj:]/§;8+") 2, mﬁ:-ﬂ-a——l:'—_a_g» (4.2)

In Equation (1.1), if we assume I = X(n;) = X(n), h = - Y(m), then
using formulas (4.1) and (4.2) we find the relative length of the cavity

nt, ny? =
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q n? b n? —¢?
A=t () ln s — s (=) “3

and the coefficient of contraction 1is
1—m? r "1 —m?
€= 1——n-|:aarctg]/ T2, arctge e S

—@B+a)@+ap)V (1 —m?) ('n’—~=’)] (4.4)

The relative depth of the cavity h/H is found from (1.1).

5. Particular cases. (a) If we put a = 1 in formulas (2,7)-(4.4)
we obtain a solution of the problem of flow of fluid, at rest at infinity,
through an infinitely long slot with the formation of a finite cavity.

In this case we will obtain

z(t)—_{{—[c(ci_n_.__i_lnc-—52_}_(1 1)1n._E_:J;?r+ (5.1)

(

LY ve—1+ye—e Ve—e e VU —

+eV{E@E—1) (P —ef) — In o +27In TR ]
W(C)=——~%—§?[(%—— )m‘ +21nt] (5.2)
)\=_i.[(1_1)1n$+(1——;~)1n;ff:—_§—a(na—ne)] (5.3)

1 "y _ _
e=1—_—|arctg — + 2tarctg Vew——- * Ve (5.4)

where * ( 1/" V2 )

a=1:(1+(VZ—-1)ep, t=(1+eV2):(+(VZ—-1)e)p
(5.5)
o=1+V2+V 2, B =214+ (VZI—1)e): (VZ+1) (1 +(V2—1)%)

", gt = 2c=’+1:{:V(2¢c’4~ti)‘—~16(1—¢)e’ (5.6)

It can easily be seen that in this flow the velocity at infinity be-
fore the slot V vanishes and the critical point F is removed to infinity
(f = =) ; because only one parameter ¢ enters into the solution and, in
order to find it, we have to be given one dimensionless physical quantity

x = xle).
If x is the cavitation number k = (p, - p,)/0.5p sz we have

2(V2+1><1+V2e) e Vx—1T —(¥2+1)
(1—e)? 14+Vr—1
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(b) We can obtain another particular case if, in formulas (2.2)-(2.9),
(3.2)-(4.4) we put 8= 0, ¢ = 0. Then we will have
.7)

2(8) = [(1+a’) (c=~1)—21nc+2a(t:l/c=—"1 +1na—'/-’€'—_—__1)]

{1+ a)
w(0) = < [(1 —ah) ((— 1) —2Ing] (5.8)
A = oo, e=1:(14+a) (5.9)
m =0, n=1:(1+4a), n =0 (5.10)

In this flow the velocity in front of the slot at infinity is not
zero and there is a critical point F on the wall. Thus, formulas (5.7)-
(5.10) yield the solution to the problem of a fluid moving at infinity
into an infinitely long slot (Fig. 5). Into the solution there enters
one parameter a and, therefore, to determine this parameter we must be
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given one dimensionless physical quantity x = x(a). If x is the cavita-
tion number, x = (p, ~ p,)/0.5p V;? so that

4a ®

T (t—a)’ ¢= 24+x+2V1iFx

(c) Assuming ¢ = 0 in formulas (5.1)-(5.6), or @ = 1 in formulas (5.7)-
(5.10), we obtain

H 1
= ?—1—1In¢ Ve -1 41 _______)
z(§) - ( n{+¢ + nt i

i.e. the solution to the well-known problem of the flow of fluid, at rest
at infinity, into an infinitely long slot [11].
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