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We deal with a form of cavitation flow which is the 

through a Borda orifice [ 1 1 , and which can be used 
study of slot cavitation [ 2 1. 

general case of fl’ow 
for a theoretical 

1. ‘lbe general problem. Assme that a plane stream of ideal, 
weightless, incompressible fluid flows into an infinitely long slot, in- 
side which there develops a cavitation void, i.e. a region of constant 
pressure bounded by a stream line which separates from the edge of the 
slot and goes off into a second sheet of a Riemann surface. Figure 1 is 
a diagram of this kind of cavitation flow. lhe letters Y,, I’,, and If de- 
note, respectively, velocity of the approaching stream at infinity, velo- 
city in the slot at infinity and the slot depth. ‘Ihe required flow has 
two critical points (location unknown at the outset), represented in 
Fig. 1 by the letters D and F. For the dimensions of the cavity we have: 
1 the distance between two parallel tangents through points N and N, on 
the cavity and h the ordinate of the point M which has a tangent parallel 
to the upper wall. 

The constant velocity at the edge or boundary of the cavity will be 
denoted by l’s and the total flow of fluid through the slot is Q. 

lhe flow we are dealing with is a general case, as mentioned above, of 
the well-known flow studied by Kirchoff [ 1 1. It differs from the latter 
in that, instead of the classical Kirchoff-Holmholtz pattern 111, we 
choose that suggested in [3,4 1 , and also, in our case, the velocity at 
infinity V, f 0. 

Let us introduce two dimensionless geometrical parameters 

A=& ,,,-h 
H (1.1) 

and we will call A the relative length of the cavity and e the coefficient 
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Of contraction Of the flow. 

..f” L----_-c! 
0 

FIG. 1. 

If we are given any two dimensionless physical qusntities K~ and K~ 

which characterize the flow, then, in the physical sense of the problem, 
all remaining hydrodynsmic flow parameters (in particular A and e) should 
be determined by K~ and K*. 

For K~ and K* we can take the cavitation numbers 

PI--PO -Po -- 

xl - 1/apv1* ’ 
-- %a - ~;*pvaa (1.2) 

where pa is the pressure in the cavity, p1 and pz pressures, respectively, 
at infinity upstream of the slot and within the slot. 

&r problan involves the following: to find the complex potential of 
the required flow II = W(z) = 4 + i $ , where # is the velocity potential 
and + the streaar function, and then to determine the relation between the 
quantities X and e and the two diaamaionless quantities K~ and K*. 

2. Deter&nation of complex potential. Rle will find the rela- 
tion II = R(z) in parmetric form: 

w = w (C). 2 = 2 (C) (2-l) 

where 5 = 6 + iq is a caaplex variable which covers the first quadrant 
of the upper half-plane [q. Fut W = 0 at point A in the flow. ‘Ihe region 
in which W varies will be the half-plsne with two cuts (Fig. 2). On trans- 
forming region W into region 5 so that the qpropriate points in Figs. 
2 and 3 correspond, we obtain (2.2) 

3 
[ 

I’ 
ta - es fW p-es 

w 0 = 1c (E + p -El) - I - (CP + p-c)) In 1-_Ez + F ‘n (1 - @) c2 I 
To determine z<<> we introduce au auxiliary function 

IdW V 
x(C)=lny,x =lnv;-ii9 

and note that 

(2.3) 
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2 (t) = 
Q 

n (CP + f - es) s ’ (ty - $1 (t2 - f2) ,-xtacn; t (V - 4 
1 

f2.Q 

It is easy to see that ~(5) is an analytic function ail over the 
region where 5 varies, with the exception of points 5 = f and 5 = d, at 
which it has logarithmic singularities. At the boundaries of the regions 
where 5 varies, the function x(C) satisfies the following boundary condi- 
tions 

Imx=--n np~ t=E, d<gszt 

fmx33c npa t =5, idE<f 

Rex=0 npn t =5s cQE91 (2.5) 

‘hs, to determine the function x(r) it is necessary to solve the 
mixed ~~da~~value problem (2.5) which is easy to reduce to a mixed 
boundary-value problem in the upper half-plane. 

FIG, 2. FIG. 3. 

If we make use of formulas which yield a solution to the general 
boundary-value problem for a half-plane (5.6)) and apply them to our case 
we obtain 

It is easy to see that the function ~((1 which we have found satisfies 
all the conditions indicated above. The parameters a and p which enter 
expression (2.61, are connected with f and d by the relations 

@,<a. B&f) (2.6) 

Instead of inserting x(C) into (2.4) we use (2.6) and find 
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+ @ + a) (1 + a@ VP - 1) (t* - a*) - u In 
vF=I+vP=2 + 

vi- 
- 9 

a = (1 t ap) (a (1 + va) + B (3 - v*)), 6 = (i + aS)%* + (8 + ac)* 
c = (1 + aW + 2(a f B) (I3 + a@) - (a + P)V. r = U + ag) (B + idi 
4 = i : (0 + ~1, t = (1 + cW + (a + p)* (2.9) 

3. bterrination of parameters. With arbitrary values for the 
parameters a, B and c which entered the formulas (2.21, (2.8) aud (2.91, 
the solution obtained emsrges as more general than was required at the 
outset. Indeed, it is easy to see that the formulas which give a solution 
to the problem uould not chauge if line A F B on the one hand, and ED C 
on the other, represented solid parallel walls not touching each other 
(Fig. 4). It is therefore essential to require fulfilment of condition 
Im z<[> = 0 on BDC, or, as follows fran (2.81, the condition 

where 

R (a, e) fi* + rT (a, 8) $ - aa = 0 

R(a,0)=(i+e)~+(2+c)ea 
T(a,e)=2+(1-a)0 

Solve this quadratic equation for B and we then have 

B JfT’(a, L) + cLaR(a, t) -T (a, v) 
= 

2T (a, v) 

f 

FIG. 4. 

(3.1) 

Thus, the solution we have found contains the tm arbitrary parmaters 
a and 6. To determine these parmaters one must be given the two afore- 
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mentioned physical quantities ~~ and K*. If by using the co~&.~ poten- 
tial II = R(z) found in parametric form (2.1) it is possible to express 
K~ and ~~ in terms of a and l then we will have two equations for deter- 
mining a and 6 : 

XI = xl (a, 8; B (a, 41, xs = x2 (a, =; I3 (a, 4) 

where /3(a, C) is the R.H.S. of Equation (3.11. 

Let K~ and 1(2 be cavitation nmnbers determined by formulas (1.2); we 
then have 

(I+ 0 (I+ B (6 e)F _ 1 

X’=(l-a)a(l-fi(a,r))~ ’ 

We are convinced of the validity 
in virtue of the Bernoulli integral 

1 p (Vo” - VP), P1-PO= 2 

and that, in accordance with (2.3) 

Vl / vo = exp x (00). 

4. Shape and dimensions of 

(1 + aa)’ (e + i3 (a, e))* 
XP=(1-a8)1(e-_((ar,*))~-1 (3*2) 

of these equations if we recognise, 

P2-PO = + P (VoS - vi9 

Vs/Vo=expX(0) 

the cavity contraction coeffi- 
cient. The shape of the cavity is represented by the free stream 
ANktY 1 B which bounds it (Fig. 11. 

In order to rind the shape of the free stream line X = X(t), Y= Y<e> 
let us put < = 5, l < f < 1 in Equation (2.8) and separate the real amd 
imaginary parts; re then get 

y (5) = T [ (B + 4 (1 + aP) V(1 -P) (t* - 8%) - 

It is evident 

y axis at points 
to the x axis at 

_a 
- a arc tg sz + 2 + arc tg 8 jfZ] (4.1) 

that the free stream has two tangents parallel to the 
NW(n), Y(n)), NIW(nl), I'$)) and one tangent parallel 
1(X(r), Y(r)), so that 

na, ng = c + e*s f v (c + ass)1 - 4sb 
2s I ml _ B + aa 

a+8 (4.2) 

In Equation (Ll), if we assume 2 = X(n,) - X(n), h c - Y(l), then 

USiIljJ formulas (4.1) and (4.2) we find the relative length of the cavity 
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A=+ +1n II 
aud the coefficient of contraction is 

lhe relative depth of the cavity h/H is found from (1.1). 

5. Particular cases. (a) If we put a = 1 in formulas (2.7)~(4.4) 
we obtain a solution of the problem of flow of fluid, at rest at infinity, 
through an infinitely long slot with the formation of a finite cavity. 

1 - (B + a) (i + ap) V (I - d) (m* - es), 

(4.3) 

(4.4) 

In this case we willobtain 

I(t)=~[o(~~-i)-~ln~~+(i-~)ln (iCs.-SS + 
- 6) C” 

(5.1) 

+ a I/p.- 1) (p--c*) - In 
p=T+;& 

1/n 
+2T,n Vm+eVFZ 

C1/l-es 1 
w (F) = - $q&‘)lu~~ +21nt] 

A =$[(*-~)In~+(‘-~)ln~~~-~(n’-~*‘)] (5.3) 

where 
c&+ctg/; + 2*arctgVG--+G) (5.4) 

(5.2) 

d = 1 : (1 + (JCT- 1) c)2. 7 = (i + e 1/2) : (1 + ( VT- 4) 6)s 
(5.5) 

o=i +p+JGt, s=2e(lf()/~-- 1) e) : (VT+ 1) (I+ (VT--- aI+) 

na, nls = 
20c* + 1 rfi: ~(2ue’Jf 1)S-i6Ai -r)e* 

40 
(5.6) 

It cau easily be seen that in this flow the velocity at infinity be- 

fore the slot Y vanishes and the critical point F is removed to infinity 

(f = 0~) ; bemuse only one parsmeter c enters into the solution and, in 
order to find it, we have to bs given one dimensionless physical quantity 
K = K(C). 

If K is the cavitation numkr K = (pz - po),/0.5p v,* we haYe 

x_ 2 (1/z-+ i)(i +Jw - 
(i-e)* ’ 
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(b) We cau obtain another particular case if, in formulas (2.2)- (2.9), 
(3.2)-(4.4) we put /3 = 0, 6 = 0. Then we will have 

(5.7) 

2 (I) = 
H 

x (1 + a) [ 
(1 + a*) (t’- 1)-2l*r+2a’tv/t”-- 

t 

1 
+ln - 

2+)/P--f )I 
w(t) = +- [(i - a’) (P- 1) - 2 In t;] (5.8) 

h=CV, e=l:(l+a) (5.9) 

m =O, nr = 1 : (1 + a), nl =o (5.10) 

In this flow the velocity in front of the slot at infinity is not 
zero aud there is a critical point F on the wall. Thus, foxmulas (S-7)- 
(5.10) yield the solution to the problem of a fluid moving at infinity 
into au infinitely long slot (Fig. 5). Into the solution there enters 
one parmeter a and, therefore, to determine this parameter we mst be 

FIG. 5. 

given one dimensionless physical quantity K = K (a). If K is the cavita- 
tion number, K = (pl - p0)/0.5p V,” so that 

4a 
%=(1--* 

x 

a= 2+x+2vrjG 

(c) Ammling c = 

(5. lo), we obtain 
0 in formulas (5. U-(5.6), or u = 1 in formulas (5.7)- 

z(r)2 C’ ( -i--lnc+t m+ln 
1 
_ 

5c r: + I/r - 1 1 

w(C)=- T In c, 
1 

e=- 
2 

i.e. the solution to the rrell-lcnown problem of the flow of fluid, at rest 
at infinity, into au infinitely long slot [ 1 I. 
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